Measuring spike train distance from multichannel spike trains data simulated by coupled escape rate model
نویسندگان
چکیده
Estimating the population activity patterns between two or more spike trains is a fundamental problem in studying neural coding in computational neuroscience. In recent years, there are many different methods proposed to build a framework to deal with these problems by using spike train metric. Here we suggest a kernel method for multichannel spike trains that can provide an opportunity to measure spike trains. As kernels can be used for various tasks in machine learning, including regression, clustering and dimension reduction. We believe this method is effective at measuring multichannel spike trains simulated using a distance. Keyword spike train distance, coupled escape rate model, kernel methods, multichannel spike trains, neuronal coding
منابع مشابه
The Computational Structure of Spike Trains
Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal stat...
متن کاملQuantifying Neural Correlations Using Lempel-ziv Complexity
Spike train analysis generally focuses on two aims: (1) the estimate of the neuronal information quantity, and (2) the quantification of spikes or bursts synchronization. We introduce here a new multivariate index based on LempelZiv complexity for spike train analysis. This index, called mutual Lempel-Ziv complexity (MLZC), can both measure spikes correlations and estimate the information carri...
متن کاملA New Class of Metrics for Spike Trains
The distance between a pair of spike trains, quantifying the differences between them, can be measured using various metrics. Here we introduce a new class of spike train metrics, inspired by the Pompeiu-Hausdorff distance, and compare them with existing metrics. Some of our new metrics (the modulus-metric and the max-metric) have characteristics that are qualitatively different from those of c...
متن کاملMeasuring spike pattern reliability with the Lempel-Ziv-distance.
Spike train distance measures serve two purposes: to measure neuronal firing reliability, and to provide a metric with which spike trains can be classified. We introduce a novel spike train distance based on the Lempel-Ziv complexity that does not require the choice of arbitrary analysis parameters, is easy to implement, and computationally cheap. We determine firing reliability in vivo by calc...
متن کاملA Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains
RUIWEN ZHANG : A Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains. (Under the direction of Young K. Truong and Haipeng Shen.) The advent of the multi-electrode has made it feasible to record spike trains simultaneously from several neurons. However, the statistical techniques for analyzing large-scale simultaneously recorded spike train data have not de...
متن کامل